Supercuspidal unipotent representations: L-packets and formal degrees
نویسندگان
چکیده
منابع مشابه
Supercuspidal L-packets of positive depth and twisted Coxeter elements
The local Langlands correspondence is a conjectural connection between representations of groups G(k) for connected reductive groups G over a p-adic field k and certain homomorphisms (Langlands parameters) from the Galois (or WeilDeligne group) of k into a complex Lie group Gwhich is dual, in a certain sense, to G and which encodes the splitting structure of G over k. More introductory remarks ...
متن کاملSupercuspidal Representations: an Exhaustion Theorem
Let k be a p-adic field of characteristic zero and residue characteristic p. Let G be the group of k-points of a connected reductive group G defined over k. In [38], Yu gives a fairly general construction of supercuspidal representations of G in a certain tame situation. In this paper, subject to some hypotheses on G and k, we prove that all supercuspidal representations arise through his const...
متن کاملConstruction of Tame Supercuspidal Representations
The notion of depth is defined by Moy-Prasad [MP2]. The notion of a generic character will be defined in §9. When G = GLn or G is the multiplicative group of a central division algebra of dimension n with (n, p) = 1, our generic characters are just the generic characters in [My] (where the definition is due to Kutzko). Moreover, in these cases, our construction literally specializes to Howe’s c...
متن کاملRefined Anisotropic K-types and Supercuspidal Representations
Let G be any connected reductive group defined over a nonarchimedean local field F of residual characteristic p. Under some tameness assumptions on G, we construct families of positive-depth supercuspidal representations of G = G(F ). In particular, we classify (§2.7) the representations of G that contain any anisotropic unrefined minimal K-type (in the sense of MoyPrasad [28]) that satisfies a...
متن کاملUnipotent Automorphic Representations : Conjectures
In these notes, we shall attempt to make sense of the notions of semisimple and unipotent representations in the context of automorphic forms. Our goal is to formulate some conjectures, both local and global, which were originally motivated by the trace formula. Some of these conjectures were stated less generally in lectures [2] at the University of Maryland. The present paper is an update of ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal de l’École polytechnique — Mathématiques
سال: 2020
ISSN: 2270-518X
DOI: 10.5802/jep.138